#
kNN kNN算法的原理很简单,就是将新数据的特征与样本集中相应的特征进行比较,然后提取将样本集中特征最相似的数据的分类标签作为新数据的标签,一般的,只选取数据集中前k个最相似的元素,因此该算法
K最近邻算法是分类问题中经常使用的一种非参数方法。算法的思路清晰简洁:对于待分类的样本,找出与其最近的K个样本(即训练样本中的K个)。然后对这K个样本进行投票,待分样本与多数样本的类别一
K-邻近分类方法通过计算待分类目标和训练样例之间的距离,选取与待分类目标距离最近的K个训练样例,根据K个选取样例中占多数的类别来确定待分类样例。距离类型有很多,大致有欧式距离