本文介绍了详解TensorFlow在windows上安装与简单示例,分享给大家,具体如下: 安装说明 平台:目前可在Ubuntu、Mac OS、Windows上安装 版本:提供gpu版本、cpu版
在上一篇文章tensorflow入门:tfrecord 和tf.data.TFRecordDataset的使用里,讲到了使用如何使用tf.data.TFRecordDatase来对tfrecord文件
在atom+react-native项目中安装了nuclide。然而使用flow的时候出现了问题。 $ brew -v Homebrew 1.2.0 $ flow version Flow, a
本文实例为大家分享了TensorFlow实现卷积神经网络的具体代码,供大家参考,具体内容如下 代码(源代码都有详细的注释)和数据集可以在github下载: # -*- coding: utf-
Tensorflow数据读取有三种方式: Preloaded data: 预加载数据 Feeding: Python产生数据,再把数据喂给后端。 Reading from file: 从
在前几天写的一篇博文《如何从TensorFlow的mnist数据集导出手写体数字图片》中,我们介绍了如何通过TensorFlow将mnist手写体数字集导出到本地保存为bmp文件。 车牌识别在当今社会
最近一直在用TF做CNN的图像分类,当softmax层得到预测结果后,我希望能够看到预测结果,以便和标签之间进行比较。特此补上,以便自己记忆。 我现在通过softmax层得到变量train_logit
也有些正则方法可以限制回归算法输出结果中系数的影响,其中最常用的两种正则方法是lasso回归和岭回归。 lasso回归和岭回归算法跟常规线性回归算法极其相似,有一点不同的是,在公式中增加正则项来限制斜
问题 问题是这样的,要把一个数组存到tfrecord中,然后读取 a = np.array([[0, 54, 91, 153, 177,1], [0, 50, 89, 147, 196],
本篇文章主要通过一个简单的例子来实现神经网络。训练数据是随机产生的模拟数据集,解决二分类问题。 下面我们首先说一下,训练神经网络的一般过程: 1.定义神经网络的结构和前向传播的输出结果 2.定义损失函