一开始自学Python的numpy、pandas时候,索引和切片把我都给弄晕了,特别是numpy的切片索引、布尔索引和花式索引,简直就是大乱斗。但是最近由于版本的问题,从之前的Python2.7改用P
series序列中每个元素都是带有日期形式的字符串,需要将其转化为一个同等大小的series,且其中每个元素都是星期几。 1)将Series转化为datetime格式; 2)将Series中每个元素转
本文研究的主要是pandas常用函数,具体介绍如下。 1 import语句 import pandas as pd import numpy as np import matplotlib.pyp
合并 numpy中 numpy中可以通过concatenate,指定参数axis=0 或者 axis=1,在纵轴和横轴上合并两个数组。 import numpy as np import pand
直接代码 data_arr = [] data = iter_files(dir,speakers) for k,v in data.items(): data_arr.append([k,v]
摘要:本文主要是在pandas中如何对字符串进行切分。我们考虑一下下面的应用场景。 这个是我们的数据集(data),可以看到,数据集中某一列(name)是某个行业的分类。各个行业之间用符号 ‘|'
本文实例讲述了Python pandas RFM模型应用。分享给大家供大家参考,具体如下: 什么是RFM模型 根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有3个神奇的要素,这
问题描述 python的pandas库中有一个十分便利的isnull()函数,它可以用来判断缺失值,我们通过几个例子学习它的使用方法。 首先我们创建一个dataframe,其中有一些数据为缺失值。
折线图是数据分析的一种手段,但是有时候我们也需要柱状图进行不同数据的可视化量化对比。使用pandas的DataFrame方法进行柱状图的绘制也是比较方便的。 把之前的折线图绘制代码修改一下如下:
最近在倒腾一个txt文件,因为文件太大,所以给切割成了好几个小的文件,只有第一个文件有标题,从第二个开始就没有标题了。 我的需求是取出指定的列的数据,踩了些坑给研究出来了。 import pand