模型的恢复 对于的模型的恢复来说,需要首先恢复模型的整个图文件,之后从图文件中读取相应的节点信息。 存储的模型文件包括四个子文件,如下: 现在假如我想恢复模型中的某个节点信息: 需要注意
较基础的SVM,后续会加上多分类以及高斯核,供大家参考。 Talk is cheap, show me the code import tensorflow as tf from sklearn.
用tensorflow构建简单的线性回归模型是tensorflow的一个基础样例,但是原有的样例存在一些问题,我在实际调试的过程中做了一点自己的改进,并且有一些体会。 首先总结一下tf构建模型的总体套
tensorflow里面提供了实现图像进行裁剪和填充的函数,就是tf.image.resize_image_with_crop_or_pad(img,height,width )。img表示需要改变的
实例如下所示: import numpy as np W_val, b_val = sess.run([weights_tensor, biases_tensor]) np.savetxt("W.
如图,简单易懂,先激活tensorflow,然后进入python,输入python语句执行查询: 需要注意的是一定要在激活tensorflow环境后再输入python命令,否则会识别不到tensor
已经有了一个预训练的模型,我需要从其中取出某一层,把该层的weights和biases赋值到新的网络结构中,可以使用tensorflow中的pywrap_tensorflow(用来读取预训练模型的参数
在TensorFlow中,tf.train.exponential_decay函数实现了指数衰减学习率,通过这个函数,可以先使用较大的学习率来快速得到一个比较优的解,然后随着迭代的继续逐步减小学习率,
一、卷积神经网络CNN简介 卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比
识别MNIST已经成了深度学习的hello world,所以每次例程基本都会用到这个数据集,这个数据集在tensorflow内部用着很好的封装,因此可以方便地使用。 这次我们用tensorflow搭建